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Introduction

Suppositions come in different forms and moods.

Typically, suppositional reasoning is dealt within the framework of proba-
bilistic updating.

In this talk, we want to link this discussion better to that of causal reasoning.
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Suppositional Reasoning as Probabilistic Updating

Suppositional Reasoning

Suppositions come in two different basic moods:
Indicative Mood: Supposing the truth of A amounts to revising one's epis-
temic state in exactly the way as if one learns the truth of A.

Subjunctive Mood: Supposing the truth of A amounts to revising one's epis-

temic state in exactly the way as if one learns that A had been
made true by some “local miracle”.

Furthermore, we distinguish between full and partial suppositions:
Full: treating A as certain knowledge
Partial: treating A as having an increased degree of plausibility

Combine these categories (cf. Eva and Hartmann 2021):
full

indicative Full Indicative Supposition
subjunctive | Full Subjunctive Supposition

partial
Partial Indicative Supposition
Partial Subjunctive Supposition
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Probabilistic Updating: Visualisation/Framework

Finite set of possible worlds W = {wy, wo, ..., wy}
n
Each possible world has a probability Pr: Pr(w;) > 0 and > Pr(w;) =1
i=1
1
1

Proposition: set of possible worlds in which it is true
Probability of a proposition: sum of the probabilities of its possible worlds
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Probabilistic Updating: Visualisation/Framework

Updating on a proposition A brings in some dynamics:

Pr = Pr*
A
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Probabilistic Updating: Conditionalization

If we learn that a proposition A is true, it is rational to apply Bayesian
updating or conditionalization.

The idea is that we narrow down our “universe” to just the part or those
possible worlds where A is true.

The new probability (Pr*) of any proposition will be simply the (old) prob-
ability of that proposition “in the light of” A:

Pri() = Pr(|A)

E.g., to learn A implies to incorporate it with certainty: Pr*(A) =1 (this is
simply the result of conditionalization itself: Pr(A|A) = 1)
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Probabilistic Updating: Conditionalization

Since conditionalization is about taking A as certain, it is a form of full
supposition in the indicative mood:

Full Indicative Supposition Partial Indicative Supposition
Full Subjunctive Supposition | Partial Subjunctive Supposition
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Probabilistic Updating: Jeffrey Conditionalization

Now, what if we are not fully certain about A?
Jeffrey (1983) proposed a generalisation for this case.

The main idea is that what should be held fixed in updating are the condi-
tional probabilities, they are rigid:

Pri(X|Y) = Pr(X|Y)

This assumption allows us do calculate the updated probabilities:

@ Pre(X|Y) = Pr(X|Y) and Pr*(X|Y) = Pr(X|Y) (by rigidity)

@ Pre(X,Y) = Pr(X|Y)-Prs(Y) and Pr*(X,Y) = Pr(X|Y) - Pr*(Y)

© Pr<(X) = Pr(X|Y)-Prs(Y)+ Pr(X|Y) - Pr*(Y) (by adding the left and the right terms)
Hence, a generalised form of updating on uncertain or certain A in the
indicative mood is Jeffrey Conditionalization:

Pr*(-) = Pr(-|A) - Pr*(A) + Pr(-|A) - Pr*(A)
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Probabilistic Updating: Jeffrey Conditionalization

=
1 A 1
Pr pr

Since Jeffrey conditionalization is about taking A as only more plausible, it
is a form of partial supposition in the indicative mood:

Full Indicative Supposition Partial Indicative Supposition
Full Subjunctive Supposition | Partial Subjunctive Supposition
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Probabilistic Updating: Imaging
What happens if we do not only want to learn about something being more
certain, but also that something had been made more certain?

Lewis (1976) suggested an influential update rule for this that he labelled
“imaging”. (For explanatory purposes, we will stick to the initial and quite
restricted form of imaging.)

The update rule is more fine-grained than conditionalization inasmuch as it
relies on features of possible worlds underlying our propositions.

One feature of possible worlds we assume for basic imaging is that each
possible world w has a, with respect to the truth of a proposition A, closest
or most similar world w’.

E.g., if Ais true in w, then w is most similar to w w.r.t. A.

If Ais false in w, we look for that w’ that minimally revises w for A’s truth.
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Probabilistic Updating: Imaging

For our universe-grid, this means that we map each possible world w.r.t. a
proposition A to another possible world.

A

Now, the main idea of updating by imaging is that the image on A of a
probability function can be computed by shifting the original probability of
each world w over to its closest world w’ in which A is true.
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Probabilistic Updating: Imaging

Technically, we can define the rule by the help of a transition function T4.
We suppose for such a function: for all w there is exactly one w’ (the most
similar w'): Ta(w', w) = 1; all other w” are assigned 0: Ta(w”, w) =0
We can then define the image of Pr on A as:
Pr({wi}|;A) = > Pr({w})- Ta(w,w)
weW
And for propositions:
Pr(X|;A) =Y Pr({w}|,A)
weX
The update rule based on learning that A was brought about is simply:

7() = Pr([, A)

Since Pr*(A) =1, it is a form of full supposition in the subjunctive mood:

Full Indicative Supposition Partial Indicative Supposition
Full Subjunctive Supposition | Partial Subjunctive Supposition
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Probabilistic Updating: Imaging

Let us illustrate this by the help of an example (taken from Leitgeb 2016):
wi Hi: fruit basket contains exactly 1 apple + 1 banana
wy Hbp: fruit basket contains exactly 1 pear

ws Hs: fruit basket contains exactly 1 apple

Evidence A: The banana was removed if it had been there at all.

Similarity/Closeness: Initial (Pr):
¢ Ta(wi,w) =0
o Ta(wi,w) =0 ° Pr(H1) = Pr(H2) = Pr(H3) = 1/3
® Ta(wi,ws) =1
® Ta(wa,wy) =0 Y.
© Tatwp ) —1 Updated (Pr*):
® Ta(wo,wz) =0 ® Pr(Hi|;A) = Pr(w1) -0+ Pr(wz2) -0+ Pr(w3)-0=0
® Ta(ws, w) =0 ® Pr(Ho|,A) = Pr(wy) -0+ Pr(ws) -1+ Pr(ws)-0=1/3
¢ Ta(ws, w2) =0 ° Pr(H3|TA):PI‘(W1)'1+Pr(W2)'O+Pr(W3)'1:2/3
® Ta(ws,ws) =1
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Probabilistic Updating: Jeffrey Imaging

Now, what if we are not fully certain about A?

Eva and Hartmann (2021) suggest a generalisation “formally” similar to
that of Jeffrey for Bayesian conditionalisation:

The idea is simply to not fully “stretch out” A towards the borders of the
grid, but only partially:

Pre(:) = Pr(-|, A) - Pr*(A) + Pr(-|  A) - Pr*(A)

Since Pr*(A) is only taken to be more plausible, it is a form of partial
supposition in the subjunctive mood:

Full Indicative Supposition Partial Indicative Supposition
Full Subjunctive Supposition | Partial Subjunctive Supposition
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Suppositional Reasoning as Probabilistic Updating

full partial
indicative Conditionalization | Jeffrey Conditionalization
subjunctive Imaging Jeffrey Imaging
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Suppositional Reasoning as Causal Reasoning

Suppositional Reasoning as Causal Reasoning
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Bayesian Networks (BNs)

A Bayesian network is a triple (V, E, P), such that . ..
® V is a set of variables Xi,..., X,.
® Eis a binary relation on V (X; — Xj).
® P is a probability distribution over V.

)
Par(X;) ... the set of X;'s parents
Des(X;) ... the set of X;'s descendants

Definition (Markov condition)

(V, E, P) satisfies the Markov condition iff every X € V is probabilistically
independent of its non-descendants conditional on its parents (Pearl 2000):

P(X1,..., Xn) = [ P(Xi|Par(X;))
i=1
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Suppositional Reasoning as Causal Reasoning
An Example

Alice works in an office. A new fire alarm system monitoring the whole
building has recently been installed.

Assume that Alice supposes that the alarm goes off.

If she does so in an indicative mood, then she will also come to a couple of
other beliefs:

® that there might be a Fire

® that the building soon will get very Hot

® that the alarm was also heard by her colleague Bob

® that the building will be Evacuated

m®» I ™

If Alice supposes the alarm to go off in a subjunctive mood, on the other
hand, then she will only come to believe:
® Bob

® FEvacuation

She would only have to come to the beliefs regarding the effects of the alarm
going off, but not about the event's possible cause.
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Suppositional Reasoning as Causal Reasoning

An Example
B A:  whether the alarm goes off
F:  whether there is fire
A H H: whether it is hot in the building
& B B: whether Bob hears the alarm
E: whether the building is evacuated
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Suppositional Reasoning as Causal Reasoning

Full Indicative Suppositions

This is the easiest case to cover. It can be captured by ordinary condition-
alization on the basis of the causal structure:

Pr3() = Pr(a)

Since F,H, B, E are each d-connected (i.e. connected without a collider)
to A, full indicative supposition of a might lead to a change in degrees of
belief in each of the events represented by these variables.

This fits our intuitive treatment of the exemplary case above: If Alice sup-

poses a in the indicative mood, i.e., treats a as certain knowledge, then her
degrees of belief of 1, h, b, and e can be expected to go up as well.

Suppositional Reasoning 20/25



Suppositional Reasoning as Causal Reasoning

Partial Indicative Suppositions

This case requires that we increase a's probability to a degree less than 1.

But if A is not exogenous, which is the case in our causal structure in
underlying the Alice example, we cannot simply change A's distribution
without changing some of the BN's other parameters at the same time.

However, there is a technical trick to calculate A's impact: We can construct
a probabilistically equivalent BN in which A is exogenous:

(Problem:) In the second graph, the arrows can no
longer be interpreted as causal arrows.

But we can change A's probability distribution

) without changing any of the BN's other parameters.
(A

This allows us to compute the epistemic ef-
® © - B ® fects of Alice supposing a in the part. ind. mood.

As in the case of full ind. supposition, by d-
connection we get some but less impact.
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Suppositional Reasoning as Causal Reasoning

Full Subjunctive Suppositions

We propose to handle full subjunctive suppositional reasoning in terms of
surgical interventions (cf. Pearl 2000).

The idea is to first delete all arrows pointing at A:

F)
A A

Next, one assumes that A takes value a.

Pearl: Deleting all arrows incoming to A and assigning probability 1 to the
event that A takes on a is marked with a hat symbol &; the post-intervention
distribution is Prs(-) = Pr(+|3)

So we can compute Alice’s updated distribution after full subj. supp. of a:

Pri() = Pri()
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Suppositional Reasoning as Causal Reasoning

Partial Subjunctive Suppositions

To partially subjunctively suppose a faces the same problem as we had w.r.t.
the indicative mood: A is not exogenous.

However, we do not need to apply a “technical trick” (losing grip of the
causal structure) here.

The reason is simply that if we intervene on A, then A becomes exogenous.
So, first we calculate the post-intervention distribution based on:

B,
®® = §®

Next, we increase a's probability to a value less than 1. We designate this
probability with Pr;(-). Updating in the partial subjunctive mood results in:

Pri() = Pra()
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Suppositional Reasoning as Causal Reasoning

Suppositional Reasoning as Causal Reasoning

full partial
indicative Conditionalization Pr(-|a) | Single Value-Manipulation Pra(-)
subjunctive Intervention Prs(-) Generalized Intervention Pr(-)
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Probabilistic Updating and Causal Reasoning

Probabilistic Updating and Causal Reasoning
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Adequacy (WIP)

Does our treatment of suppositions in the causal setup coincide with the
different update rules?

full partial
indicative v v
subjunctive | v probably wip
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